Слуховой анализатор: строение и функции

Слуховой анализатор является важнейшей частью системы чувств человека. Строение слухового анализатора позволяет людям общаться друг с другом посредством передачи звука, воспринимать, интерпретировать и реагировать на звуковую информацию: когда приближается машина, благодаря звукам, воспринятым посредством слуха, человек вовремя уходит с дороги, что позволяет избежать опасной ситуации.

Что такое звук

Звуковые волны являют собой вибрации в твердой, жидкой или газообразной среде, которые можно услышать с помощью органа слуха. Звук определяется в слышимом диапазоне спектра, точно так же как свет – в видимой части спектра электромагнитных волн.

Вибрации звуковых волн являют собой распространение движения на молекулярном уровне, которое характеризуется движением молекул около состояния равновесия.

В процессе этого движения, которое создается механическим путем, молекулы подвергаются акустическому давлению, которое приводит к тому, что они сталкиваются друг с другом и передают эти вибрации дальше.

Когда передача энергии прекращается, смещенные со своего места молекулы возвращаются в исходное положение.

Слуховой анализатор: строение и функции

Сходство зрительного и слухового анализатора в том, что они оба способны воспринимать конкретные качества, выбирая их из общего звукового потока. Например, место расположения источника звука, его громкость, тембр и т.д.

Но физиология слухового анализатора функционирует так, что слуховая система человека не смешивает разные частоты, как это делает зрение, когда различные длины световых волн смешиваются друг с другом, – и глазной анализатор представляет это в виде непрерывного цвета.

Вместо этого звуковой анализатор разделяет сложные звуки на составляющие тоны и частоты так, что человек различает голоса конкретных людей в общем гуле или отдельные инструменты в звуках оркестра. Особенности отклонений в слухе позволяют выявить различные аудиометрические методы исследования слухового анализатора.

Наружное и среднее ухо

То, как устроен слуховой анализатор влияет на работу его структур, отделов уха, подкорковых релейных и корковых центров. Анатомия слухового анализатора включает в себя строение уха, стволовых и корковых отделов головного мозга. Отделы слухового анализатора – это:

  • периферическая часть слухового анализатора;
  • корковый конец слухового анализатора.

Согласно схеме, строение уха состоит из 3 частей. Внешнее и среднее передают звуки ко внутреннему уху, где они преобразуются для обработки нервной системой в электрические импульсы. Таким образом, функции слухового анализатора делятся на звукопроводящие и звуковоспринимающие.

Внешнее, среднее и внутреннее ухо – это периферический отдел слухового анализатора. Внешняя часть уха состоит из ушной раковины и слухового прохода. Этот проход закрывает с внутренней стороны барабанная перепонка. Слуховой анализатор строение и функции которого включают периферический отдел слухового анализатора, выполняет роль акустической антенны.

Звуковые волны собираются в части внешнего уха, которая называется ушная раковина и по ушному проходу достигает барабанной перепонки, заставляя ее вибрировать. Таким образом, внешнее ухо является резонатором, что усиливает звуковые колебания.

Слуховой анализатор: строение и функции

Барабанная перепонка – это конец внешнего уха. Дальше начинается среднее, которое сообщается с носоглоткой посредством евстахиевых труб.

Возрастные особенности слухового анализатора в том, что у новорожденных полость среднего уха заполнена амниотической жидкостью, которую к третьему месяцу сменяет воздух, что попадает сюда через евстахиевы трубы.

В полости среднего уха барабанная перепонка соединяется при помощи цепи из трех слуховых косточек с другой перепонкой, называемой овальным окном. Она закрывает полость внутреннего уха.

Первая косточка, молоточек, вибрируя под действием барабанной перепонки, передает эти колебания наковальне, которая заставляет колебаться стремечко, что давит на овальное окно в улитке.

Основание стремечка оказывает механическое давление, усиленное в десятки раз, на овальное окно, в результате чего перилимфа в улитке начинает колебаться.

Помимо овального окошка, существует круглое, которое также отделяет полость среднего уха и внутреннего уха.

Соотношение барабанной перепонки к поверхности овального окошка составляет 20:1, что позволяет усилить звуковые колебания в двадцать раз. Это надо для того, чтобы для колебания жидкости во внутреннем ухе нужно гораздо больше энергии, чем для колебания воздуха в среднем.

Внутреннее ухо

Во внутреннем ухе представлены два различных органа – слуховой и вестибулярный анализаторы. Благодаря этому схематически строение внутреннего уха предусматривает наличие:

  • преддверия;
  • полукруглых каналов (отвечают за координацию);
  • улитки (отвечает за слух).

Оба анализатора имеют сходные морфологические и физиологические свойства. Среди них – волосковые клетки и механизм передачи информации к головному мозгу.

Слуховой анализатор: строение и функции

Различение звуковых частот начинается в улитке внутреннего уха. Она устроена так, что разные ее части реагируют на различную высоту звуковых колебаний. Высокие ноты колеблют одни части базилярной мембраны улитки, низкие – другие.

В базилярной мембране располагаются волосковые клетки, на верхушке которых расположены целые пучки стереоцилий, которые отклоняются расположенной сверху мембраной.

Волосковые клетки превращают механические вибрации в электрические сигналы, которые по слуховому нерву идут к стволу головного мозга. Таким образом, проводниковый отдел слухового анализатора представлен волокнами слухового нерва.

Поскольку каждая волосковая клетка имеет свое место в базилярной мембране, каждая клетка передает в мозг звук другой тональности.

Структура улитки

Улитка является «слышащей» частью внутреннего уха, что размещается в височной части черепа. Она получила свое название благодаря спиральной форме, напоминающую ракушку улитки.

Состоит улитка из трех каналов. Два из них, scala tympani и scala vestibule, заполнены жидкостью, называемой перилимфа. Взаимодействие между ними происходит с помощью маленького отверстия, что именуется helicotrema. Кроме того, между scala tympani и scala vestibuli расположены с внутренней стороны нейроны спирального ганглия и волокна слухового нерва.

Третий канал, scala media, расположен между scala tympani и scala vestibule. Он наполнен эндолимфой. Между scala media и scala tympani на базилярной мембране находится структура, что называется Кортиев орган.

Каналы улитки состоят из двух разновидностей жидкости, перилимфы и эндолимфы. Перилимфа имеет тот же ионный состав, что и внеклеточная жидкость в любой другой части тела. Она наполняет scala tympani и scala vestibule.

Эндолимфа, заполняющая scala media, имеет уникальный состав, предназначенный только для этой части тела состав. Прежде всего, она очень богата калием, который вырабатывается в stria vascularis и очень бедна натрием.

Также в ней практически отсутствует кальций.

Слуховой анализатор: строение и функции

Эндолимфа имеет позитивный электрический потенциал (+80 mV) по отношению к перилимфе, богатой натрием. Кортиев орган в верхней части, где расположены стереоцилии, смачивается эндолимфой, у основания клеток – перилимфой.

Таким методом улитка способна провести очень сложный анализ звуков, как по их частоте, так и по громкости. Когда давление звуков передается к жидкости внутреннего уха стремечком, давление волн деформирует базилярную мембрану в той области канала улитки, которая отвечает за эти вибрации. Таким образом, более высокие ноты вынуждают колебаться основание улитки, а низкие ноты – ее вершину.

Доказано, что человеческая улитка способна воспринимать звуки различной тональности. Их частота может изменяться в диапазоне от 20 Гц до 20000 Гц (приблизительно 10-я октава), с шагом в 1/230 октавы (от 3 Гц до 1 тыс. Гц). На частоте 1 тыс. Гц, улитка способна зашифровать давление звуковых волн в диапазоне между 0 дБ и 120 дБ.

Слуховой кортекс

Кроме уха и слухового нерва слуховой анализатор включает в себя головной мозг.

Звуковая информация анализируется в мозгу в разных центрах, по мере того, как сигнал направляется в верхнюю височную извилину головного мозга.

Это слуховой кортекс, который выполняет обрабатывающую звук функцию слухового анализатора человека. Здесь находится огромное количество нейронов, каждый их которых исполняют свою задачу. Например, есть нейроны, что:

  • реагируют на чистые тона (звуки флейты);
  • распознают сложные тона (звуки скрипки);
  • отвечают за длинные звуки;
  • реагируют на короткие звуки;
  • отвечают на изменения громкости звуков.

Слуховой анализатор: строение и функции

Есть и такие нейроны, что могут отвечать за сложные звуки, например, определять музыкальный инструмент или слово речи. Связи между слуховым и речедвигательным анализаторами позволяют изучать человеку иностранные языки.

Звуковая информация обрабатывается в различных областях звукового кортекса в обоих полушариях головного мозга. У большинства людей левая сторона мозга отвечает за восприятие и воспроизведение речи. Поэтому повреждение левого слухового кортекса при инсульте может привести к тому, что человек хоть и будет слышать, но не сможет понимать речь.

Первичный путь

Звуковая информация собирается в мозгу двумя проводящими путями слухового анализатора:

  • Первичный слуховой путь, который передает сообщения исключительно от улитки.
  • Непервичный слуховой путь, который также называют ретикулярный сенсорный путь. Он передает сообщения от всех органов чувств.

Первичный путь является коротким и очень быстрым, поскольку скорость передачи импульсов обеспечивают волокна с толстым слоем миелина. Этот путь заканчивается в слуховом кортексе головного мозга, что расположен в боковой борозде височной части головного мозга.

Первичные проводящие пути слухового анализатора проводят нервные импульсы от звукочувствительных клеток улитки. При этом в каждом конечном пункте звена передачи происходит расшифровка и интеграция нервных импульсов ядерными клетками улитки.

Первое переключательное ядро первичного слухового пути находится в улиточных ядрах, что располагается в стволе головного мозга. Нервные импульсы идут по спиральным ганглиарным аксонам типа 1. На этом уровне переключения происходит расшифровка нервных звуковых сигналов, которые характеризуют продолжительность, интенсивность и частоту звука.

Слуховой анализатор: строение и функции

Второе и третье переключательные ядра первичного слухового пути играют значительную роль в определении местоположения источника звука. Второе переключательное ядро в стволе головного мозга носит название комплекс верхних олив. На этом уровне большинство синапсов слухового нерва перешли центральную линию. Третье переключательное ядро располагается на уровне среднего мозга.

И, наконец, четвертое переключательное ядро находится в таламусе. Здесь происходит значительная интеграция звуковой информации, и происходит подготовка к моторной реакции (например, произнесение звуков в ответ).

Последний нейрон первичного пути связывает таламус и слуховой кортекс головного мозга. Здесь сообщение, большая часть которого была расшифрована по дороге сюда, распознается, запоминается и интегрируется для дальнейшего произвольного использования.

Непервичные пути

Из ядер улитки небольшие нервные волокна проходят в ретикулярную формацию головного мозга, где звуковые сообщения объединяются с нервными сообщениями, которые поступают сюда от других органов чувств. Следующий пункт переключения – это неспецифические ядра таламуса, после которых этот слуховой путь завершается в полисенсорном ассоциативном кортексе.

Главная функция этих слуховых путей – выработка нервных сообщений, которые подлежат приоритетной обработке. Для этого они соединяются с центрами мозга, отвечающими за чувство бодрствования и мотивации, а также с вегетативной нервной и эндокринной системами. Например, если человек делает сразу два дела, читает книгу и слушает музыку, эта система направит внимание на более важную работу.

Слуховой анализатор: строение и функции

Первый передаточный пункт непервичного слухового пути, так же как и первичного, расположен в улиточных ядрах ствола мозга. Отсюда небольшие волокна присоединяются к ретикулярному пути ствола мозга. Здесь, а также в среднем мозгу расположены несколько синапсов, где слуховая информация обрабатывается и интегрируется с информацией от других органов чувств.

Читайте также:  Закладывает уши при беременности: причины

При этом информация фильтруется по первичному приоритету.

Другими словами, роль ретикулярной формации мозга в том, чтобы подключить к обрабатываемой звуковой информации нервные сообщения из других центров (бодрствования, мотивации), чтобы произошел отбор нервных сообщений, которые будут обрабатываться в мозгу в первую очередь. После ретикулярной формации, непервичные пути ведут к неспецифическим центрам в таламусе, а дальше в полисенсорный кортекс.

Необходимо понимать, что сознательное восприятие требует интеграции обоих типов слуховых нервных путей, первичного и непервичного. Например, во время сна, первичный слуховой путь функционирует нормально, но сознательное восприятие невозможно, поскольку связь между ретикулярным путем и центрами бодрствования и мотивации не активизирован.

И, наоборот, в результате травмы, повредившей кортекс, сознательное восприятие звуков может быть затруднено, тогда как продолжающееся интегрирование непервичных слуховых путей может привести к реакциям на звук вегетативной нервной системы. Кроме того, если ствол головного мозга и средний мозг остались целы, реакция испуга и удивления может оставаться, даже при отсутствии понимания значения звуков.

Источник: http://HumanSenses.ru/slux/sluhovoy-analizator-stroenie.html

Основные принципы строения слухового анализатора :

Строение слухового анализатора — тема нашей статьи. Как взаимосвязаны его строение и функции? Какое значение имеет слух для человека? Давайте разберемся вместе.

Что такое сенсорные системы

Каждую секунду наш организм воспринимает информацию из окружающей среды и соответствующим образом реагирует на нее. Это возможно благодаря сенсорным, или анализаторным системам. Строение слухового анализатора аналогично другим подобным структурам.

Всего в организме человека различают пять сенсорных систем. Кроме слуховой к ним относятся зрительная, обонятельная, осязательная, вкусовая. Ученые утверждают, что человек обладает еще и шестым чувством. Речь идет об интуиции — умении предвидеть события. Но структура, которая отвечает за формирование этого чувства, пока неизвестна.

Принцип работы анализаторов

Если описать строение слухового анализатора кратко, то можно назвать три его отдела. Они называются периферический, проводниковый и центральный. Такой план строения имеют все сенсорные системы.

Периферический отдел представлен рецепторами. Это чувствительные образования, которые воспринимают различные виды раздражений и преобразуют их в импульсы. Нервные волокна, которые представляют проводниковый отдел, передают информацию головной мозг. Здесь происходит ее анализ и формирование ответной реакции на раздражение.

Слуховой анализатор: строение и функции

Строение и функции слухового анализатора: кратко

Как происходит восприятие звуковых колебаний? Строение слухового анализатора подобно всем остальным. Его периферический отдел представлен ухом. Проводниковый — это слуховой нерв. По нему нервные импульсы продвигаются к центральной части. Это слуховая зона коры конечного мозга.

Слуховой анализатор: строение и функции

Способность к адаптации

Общим свойством для всех сенсорных систем является их способность приспосабливать уровень своей чувствительности к интенсивности силы действия раздражителя. Это свойство еще называют адаптацией. И строение слухового анализатора человека — не исключение.

В чем же заключается суть процесса адаптации? Дело в том, что чувствительность слуховых рецепторов может регулироваться в зависимости от степени воздействия раздражителя. Если сигнал сильный, уровень восприятия снижается, и наоборот. К примеру, вспомните, как мы постепенно начинаем различать тихие звуки через определенное время.

Для организма человека адаптация имеет защитное значение. Также она повышает функциональные возможности анализаторов путем длительных повторений.

Так происходит тренировка слуха у профессиональных музыкантов.

Люди, которые продолжительное время работают в условиях интенсивного шума или живут рядом с железной дорогой, через определенный период перестают его замечать. Это также проявление адаптации.

Как и все сенсорные системы, слуховая компенсируется функционированием остальных. Ярким примером этого является величайший композитор Людвиг Бетховен. Он был признанным мастером уже в молодом возрасте, а к тридцати годам его глухота начала быстро прогрессировать.

Но даже когда Бетховен полностью лишился слуха, он продолжал сочинять музыкальные шедевры. Он помещал в рот небольшую деревянную палочку и прижимал ее к музыкальному инструменту. Таким образом осязательная сенсорная система компенсировала слуховой анализатор.

А отсутствие зрения частично заменяется развитым слухом и обонянием.

Слуховой анализатор: строение и функции

Значение слуха

Возможно ли жить глухим? Естественно, людей с нарушениями слуха огромное количество. Несмотря на то, что больше всего информации человек воспринимает с помощью зрения, восприятие звуков также имеет большое значение.

Основные принципы строения слухового анализатора делают его работу непрерывной. Мы слышим даже во время сна. Слух позволяет воспринимать информацию на расстоянии, передавать опыт в поколениях, является средством общения.

Что такое звуковое давление

Все ли звуки мы способны воспринимать? Далеко нет. В процессе эволюции сенсорные системы приспособились к анализу информации только определенного диапазона. Это является защитой мозга от перегрузок.

Звуки формируются из колебаний воздуха. Строение слухового анализатора обеспечивает их превращение в нервные импульсы, которые анализируются в головном мозге. Амплитуту таких колебаний называют звуковым давлением. Ее единицей измерения является децибел. При обычном разговоре эта величина равна 60 дБ.

Частоту звуковых колебаний измеряют в герцах. Мы воспринимаем очень узкий диапазон — от 16 до 20 кГц. Другие колебания мы не способны слышать. Если частота колебаний ниже 16 Гц, они называются инфразвуком. В природе его используют для общения киты и слоны.

Ультразвук возникает при частоте колебаний более 20 кГц. Летучие мыши используют его для ориентации в ночное время суток. Они издают звуки, которые отражаются от предметов. Такой способ называется эхолокацией.

Слуховой анализатор: строение и функции

Орган слуха

Слуховой анализатор, строение и функции которого мы рассматриваем в нашей статье, состоит из трех отделов. Периферический представлен ухом. А правильнее сказать, органом слуха. Далее следует проводниковый отдел. Это слуховой нерв. Он передает информацию в центральный отдел, представленный слуховой зоной коры конечного мозга.

Слуховой анализатор: строение и функции

Внешнее ухо

В чем заключаются особенности анатомического строения периферического отдела слухового анализатора? Прежде всего в том, что он также состоит из трех частей. Это внешнее, среднее и внутреннее ухо.

Элементами первой части яляются ушная раковина и внешний слуховой проход. Они улавливают и направляют звуковые колебания к внутренним отделам. Ушная раковина образована эластичной хрящевой тканью, которая формирует характерные завитки.

Внешний слуховой проход имеет длину около 2,5 см, заканчиваясь барабанной перепонкой. Его кожа богата видоизмененными потовыми железами. Они выделяют особое вещество — ушную серу. Вместе с волосками она задерживает пыль и микроорганизмы.

Слуховой анализатор: строение и функции

Слуховые косточки

Строение органа слуха и слухового анализатора продолжает среднее ухо. Звуковые колебания передаются на барабанную перепонку, вызывая ее вибрацию. Чем выше звук, тем колебания интенсивнее.

Место нахождения среднего уха — височная кость черепа. Его границами являются две перепонки — барабанная и овального окна. Здесь колебания передаются на слуховые косточки.

Они имеют характерную форму, которая определяет их названия: молоточек, стремя и наковальня. Слуховые косточки анатомически соединены между собой. Молоточек узкой частью крепится к наковальне. Последняя подвижно соединена со стременем.

Колебания барабанной перепонки через слуховые косточки поступают к перепонке овального окна.

В этом отделе среднее ухо анатомически соединяется с носоглоткой при помощи евстахиевой, или слуховой трубы. Такое строение позволяет проникать сюда воздуху из окружающей среды. Поэтому давление на барабанную перепонку одинаково с обеих сторон.

Внутреннее ухо

Уже много сказано о строении и функциях слухового анализатора, а о самих рецепторах — ни слова. Это не ошибка. Их содержит внутреннее ухо. Его месторасположением является височная кость. Это сложная система извитых канальцев и полостей. Они заполнены специальной жидкостью.

От овального окна строение слухового анализатора продолжает канал, состоящий из 2,5 оборотов. Это улитка, в которой находятся слуховые рецепторы, или волосковые клетки. В улитке различают основную и покровную мембраны.

Первая образована из поперечных волокон, имеющих разную длину. Их очень много — до 24 тысяч. Покровная мембрана нависает над волосковыми клетками. В результате образуется звуковоспринимающий аппарат, который называется кортиев орган.

Он состоит из мембран и слуховых рецепторов.

Слуховой анализатор: строение и функции

Механизм действия

Когда перепонка овального окна начинает колебаться, это раздражение передается жидкости улитки. В результате возникает явление резонанса. Начинаются колебания волокон разной длины и слуховых рецепторов.

Этот процесс имеет свои закономерности. Сильный звук вызывает большой размах колебательных движений волокон. При высоком тоне звука начинают резонировать короткие волокна.

Далее механическая энергия колебательных движений превращается в электрическую. Так возникают нервные импульсы. Их дальнейшее передвижение происходит уже с помощью нейронов и их отростков. Они поступают в слуховую зону коры конечного мозга, который находится в височной доле.

Анализ звука — также важная функция слухового анализатора. Головной мозг определяет силу звука, его характер, высоту, направление в пространстве. Воспринимается также интонация слов. В результате формируется звуковой образ.

Даже с закрытыми глазами мы можем определить, из какого направления слышен сигнал. Благодаря чему это возможно? Если звук поступает в оба уха, мы воспринимает звук посредине. А точнее — спереди и сзади. Если же в одно ухо звук попадает раньше, чем в другое, то звук воспринимается справа или слева.

Приходилось ли вам замечать, что один и тот же звук люди воспринимают по-разному? Для одного телевизор работает слишком тихо, другой же ничего не слышит. Оказывается, каждый человек имеет свой порог слуховой чувствительности.

От чего зависит данный показатель? Он определяется не только строением, функциями и возрастными особенностями слухового анализатора. Наиболее острым восприятием звуков обладают люди в возрасте от 15 до 20 лет.

Далее острота слуха постепенно понижается.

Существует также такое понятие, как порог слышимости. Это самая маленькая сила звука, при которой он начинает восприниматься. Данный показатель также определяется индивидуальными особенностями.

Процесс формирования слухового анализатора

Когда человек начинает воспринимать звуки? Сразу после рождения. Ответной реакцией на звуки в этот период является проявление условных рефлексов. Это продолжается около двух месяцев. Теперь организм уже реагирует условнорефлекторно. К примеру, мамин голос становится знаком о кормлении.

На третьем месяце малыш уже различает тон, тембр, высоту и направления звуков. К году, как правило, ребенок уже понимает смысловую окраску слов.

Гигиена слуха

Строение слухового анализатора хотя и совершенно от природы, но требует постоянного внимания. Самые элементарные правила гигиены позволят вам надолго сохранить возможность восприятия звуков.

Самая простая причина ухудшения звука — накопление серы в наружном слуховом проходе. Если не удалять это вещество, могут образоваться так называемые пробки. Чтобы предупредить это, серу нужно периодически удалять.

Серьезно нужно отнестись и к последствиям вирусных заболеваний. Самый элементарный ринит, ангина или грипп могут привести к воспалению в среднем ухе. Такое заболевание называется отит. В среднее ухо опасные микроорганизмы проникают из носоглотки через слуховую трубу.

Нарушение слуха может быть вызвано и чисто механическими причинами. Одна из них — повреждение барабанной перепонки. Оно может быть вызвано и действием острого предмета, и чрезмерно громким звуком. К примеру, взрывом. Если вы ожидаете , что это может произойти, необходимо открыть рот. Такое действие делает одинаковым давление по обе стороны от барабанной перепонки.

Но вернемся к ежедневной жизни. Мы не задумываемся, что систематическое использование наушников, постоянный бытовой и транспортный шум постепенно снижают эластичность барабанной перепоки. В результате острота слуха значительно падает. А ведь процесс этот является необратимым. Только представьте, что пневматическая дрель работает с интенсивностью звука до 100 децибел, а дискотека — 110!

Читайте также:  Отоларинголог: кто это и что лечит этот врач?

Итак, слуховая сенсорная система человека состоит из трех отделов, таких как:

  • Периферический. Представлен органом слуха: внешним, средним и внутренним ухом. Завитки ушной раковины направляют колебания воздуха в наружный слуховой проход, оттуда — на специализированные косточки (молоточек, стемя и наковальню), перепонку овального окна и улитку. В последней структуре находятся волосковые клетки. Это слуховые рецепторы, которые преобразуют механические колебания в нервные импульсы.
  • Проводниковый. Это слуховой нерв, по которому передаются импульсы.
  • Центральный. Находится в коре большого мозга. Здесь информация анализируется, благодаря чему формируются звуковые ощущения.

Источник: https://www.syl.ru/article/356570/osnovnyie-printsipyi-stroeniya-sluhovogo-analizatora

Слуховой и вестибулярный анализаторы. Мышечное чувство — урок. Биология, Человек (8 класс)

Слуховой анализатор выполняет важную роль в восприятии человеком окружающей среды. С помощью слуха люди общаются, обмениваются информацией. Со слухом связано обучение речи. Через орган слуха человек получает сигналы о том, что происходит в окружающей среде.

Периферический отдел слухового анализатора представлен органом слуха, т. е. ухом. Выделяют наружное ухо, среднее ухо и внутреннее ухо.

Наружное и среднее ухо являются вспомогательными образованиями, обеспечивающими передачу звуковых колебаний во внутреннее ухо, где происходит преобразование звуковых колебаний в нервные импульсы.

Наружное ухо состоит из ушной раковины, наружного слухового прохода и барабанной перепонки.

Ушная раковина образована хрящом, покрытым кожей. Она направляет звуковые волны в наружный слуховой проход к барабанной перепонке.

Барабанная перепонка — тонкая мембрана, отделяющая наружное ухо от среднего, которая воспринимает звуковые колебания и передаёт их в среднее ухо.

Слуховой анализатор: строение и функции

Среднее ухо представлено барабанной полостью. В ней располагаются слуховые косточки. Среднее ухо соединено слуховой (евстахиевойтрубой с полостью носоглотки.

Функция слуховой трубы заключается в уравновешивании давления на барабанную перепонку. Слуховые косточки (молоточек, наковальня и стремечко) соединены между собой суставами.

 Слуховые косточки усиливают слуховые колебания и передают их на мембрану овального окна внутреннего уха.

Слуховой анализатор: строение и функции

Внутреннее ухо находится в височной кости и представлено костным и перепончатым лабиринтом. К органу слуха относится только часть этого отдела — улитка.

В улитке расположен кортиев орган — рецепторная часть органа слуха. Улитка заполнена жидкостью.

Волосковые рецепторные клетки кортиева органа воспринимают колебания жидкости и генерируют нервный импульс.

Нервный импульс по слуховому нерву передаётся в слуховую зону коры больших полушарий, расположенную в височной доле. Там происходит распознавание звуков и формирование ощущений.

Орган равновесия (вестибулярный аппарат)

Вестибулярный аппарат воспринимает положения тела в пространстве. Он располагается во внутреннем ухе и представлен тремя полукружными каналами и преддверием, состоящим из двух мешочков.

В полукружных каналах находятся рецепторные волосковые клетки, реагирующие на вращательные движения.

 В полости преддверия расположены отолиты — многочисленные  кристаллики карбоната кальция — а на внутренних стенках мешочков находятся рецепторы, воспринимающие ускорение или замедление движения.

Слуховой анализатор: строение и функции Слуховой анализатор: строение и функции

Импульсы по вестибулярному нерву передаются в центральную нервную систему, где происходит их анализ. За положение тела в пространстве отвечают многие отделы ЦНС, но в основном это функция мозжечка.

В мышцах, сухожилиях и суставах расположены рецепторы, контролирующие степень растяжения мышц. Возникшее в них возбуждение поступает в мозжечок и в теменную долю коры больших полушарий. Там формируется ощущение положения и состояния мышц тела и его различных частей и осуществляется координация всех движений.

Слуховой анализатор: строение и функции

Мышечное чувство позволяет контролировать движения и управлять ими. Благодаря этому чувству мы способны выполнять ежедневно множество сложных действий не задумываясь, автоматически. Без него человек был бы не способен выполнить какое-либо сложное движение. Мышечное чувство играет важную роль в работе людей таких профессий, как художник, хирург, токарь, водитель.

Источник: https://www.yaklass.ru/p/biologia/chelovek/organy-chuvstv-16083/slukhovoi-vestibuliarnyi-i-drugie-analizatory-16128/re-e3df0ceb-b231-4ef4-98a2-aebc7fc55a39

Слуховой анализатор. Строение и функции наружного, среднего и внутреннего уха

Слуховой анализатор – это совокупность механических, рецепторных и нервных структур, воспринимающих и анализирующих звуковые колебания. Адекватным раздражителем для слухового анализатора являются звуки, т.е. колебательные движения частиц упругих тел, распространяющихся в виде волн и воспринимающиеся ухом.

Слуховой анализатор: строение и функции Наружное ухо состоит из ушной раковины и наружного слухового прохода. Ушная раковина – эластичный хрящ, покрытый кожей. Её функция – она улавливает звуки, усиливает их и направляет их в наружный слуховой проход. Структуры наружного уха выполняют также защитную функцию, охраняя барабанную перепонку от внешних механических и температурных воздействий.

Наружный слуховой проход – полость в виде трубки, покрытая кожей и ведущая к среднему уху. Средняя длина наружного слухового прохода человека составляет 26 мм. Кожа слухового прохода содержит большое количество сальных желез и желез, вырабатывающих ушную серу, которая играет защитную роль, задерживая пыль и микроорганизмы и предохраняя барабанную перепонку от высыхания.

Наружный слуховой проход заканчивается барабанной перепонкой – натянутой мембраной воронковидной формы между наружным и средним ухом, передающей звуковые вибрации на слуховые косточки среднего уха.

Среднее ухо – полость в каменистой части височной кости, заполненная воздухом и содержащая слуховые косточки. Её функции – звукопередача и звукоусиление.

Главная часть среднего уха – это слуховые косточкимолоточек, наковальня и стремечко, последовательно связанные между собой и передающие звуковые колебания от барабанной перепонки к мембране овального окна внутреннего уха. Молоточек соединен с барабанной перепонкой, а стремечко – с овальным окном.

Слуховые косточки соединены друг с другом подвижно, при помощи суставов. Степень сокращения этих мышц меняется в зависимости от громкости звука, предохраняя внутреннее ухо от слишком сильных колебаний.

Слуховой анализатор: строение и функции В стенке, отделяющей среднее ухо от внутреннего, кроме овального, существует еще круглое окно, тоже закрытое мембраной. Колебания жидкости улитки, возникшие у овального окна и прошедшие по ходам улитки, достигают, не затухая, круглого окна. Если бы этого окна с мембраной не было, из-за несжимаемости жидкости колебания ее были бы невозможны.

Барабанная полость соединена с носоглоткой евстахиевой трубой. Благодаря ей поддерживается равновесие между давлением в барабанной полости и внешним атмосферным давлением.

При отсутствии такого равновесия возникает ощущение «заложенности» ушей (например, в самолете), которое может быть снято сглатыванием. При глотании просвет евстахиевых труб расширяется, что облегчает поступление воздуха в полость среднего уха.

Через этот канал могут проникать микроорганизмы, вызывая отит среднего уха.

Сильные шумы, постоянно действующие на ухо, наносят ему большой вред, т.к. барабанная перепонка при этом колеблется с большим размахом и теряет свою эластичность. В результате развивается тугоухость – профессиональная болезнь людей, работающих в условиях повышенного шума.

Слуховой анализатор: строение и функции Внутреннее ухо – система полостей и извитых каналов, лежащих в каменистой части височной кости. В нем различают три части – преддверие, полукружные каналы и улитку. Преддверие и полукружные каналы относятся к вестибулярному анализатору, улитка – к слуховому.Улитка – часть внутреннего уха в виде спирально закрученного канала. По всей длине, почти до самого конца улитки, костный канал разделен двумя перепонками: вестибулярной мембраной и основной мембраной. На вершине улитки обе эти мембраны соединяются и в них имеется отверстие – геликотрема. Вестибулярная и основная мембраны разделяют костный канал улитки на три узких хода: верхний (вестибулярная лестница), средний (перепончатый канал или средняя лестница) и нижний (барабанная или тимпаническая лестница).

Слуховой анализатор: строение и функции

Между верхним и нижним каналами, т.е. между вестибулярной и основной мембраной, проходит средний – перепончатый канал. Полость этого канала не сообщается с полостью других каналов улитки и заполнена эндолимфой.

Эндолимфа продуцируется специальным сосудистым образованием, которое находится на наружной стенке перепончатого канала.

Состав эндолимфы отличается от состава перилимфы, поэтому эндолимфа заряжена положительно по отношению к перилимфе.

Внутри среднего канала улитки на основной мембране расположен звуковоспринимающий аппарат – спиральный (кортиев) орган, содержащий рецепторные волосковые клетки. Эти клетки трансформируют механические колебания в электрические потенциалы, в результате чего возбуждаются волокна слухового нерва.

Аксоны нейронов спирального ганглия (первый нейрон) образуют слуховой нерв, который вместе с вестибулярным нервом образуют VIII пару черепных нервов – преддверно-улитковые (вестибуло-кохлеарные). Слуховой нерв идет к слуховым (кохлеарным) ядрам моста (второй нейрон).

Затем после частичного перекреста часть волокон идёт к первичному слуховому центру (в среднем мозге нижние бугры четверохолмия), в котором располагаются центры слухового ориентировочного рефлекса.

Другая часть волокон идет во внутренние (медиальные) коленчататые тела таламуса (третий нейрон), а отсюда в верхнюю часть височной доли коры – извилину Гешля (четвертый нейрон), где возникают звуковые ощущения.

Человек воспринимает звуковые колебания с частотой 16-20 000 Гц. В области звуковых колебаний от 1000-3000 Гц, что соответствует человеческой речи, ухо обладает наибольшей чувствительностью. Эта совокупность частот называется речевой зоной.

Источник: https://cyberpedia.su/17x11a6.html

Слуховой анализатор

Слуховой анализатор
(слуховая сенсорная система) – второй
по значению дистантный анализатор
человека. Слух играет важнейшую роль
именно у человека в связи с возникновением
членораздельной речи.

Акустические
(звуковые) сигналы представляют собой
колебания воздуха с разной частотой и
силой. Они возбуждают слуховые рецепторы,
находящиеся в улитке внутреннего уха.

Рецепторы активируют первые слуховые
нейроны, после чего, сенсорная информация
передаётся в слуховую область коры
большого мозга (височный отдел) через
ряд последовательных структур.

Орган слуха (ухо)
– это периферический отдел слухового
анализатора, в котором расположены
слуховые рецепторы. Строение и функции
уха представлены в табл. 12.2, рис. 12.10.

Таблица 12.2.

Строение и функции уха

Часть уха Строение Функции
Наружное ухо Ушная раковина, наружный слуховой проход, барабанная перепонка Защитная (выделение серы). Улавливает и проводит звуки. Звуковые волны колеблют барабанную перепонку, а она – слуховые косточки.
Среднее ухо Полость, заполненная воздухом, в которой находятся слуховые косточки (молоточек, наковальня, стремечко) и евстахиева (слуховая) труба Слуховые косточки проводят и усиливают звуковые колебания в 50 раз. Евстахиева труба, соединённая с носоглоткой, обеспечивает выравнивание давления на барабанную перепонку
Внутреннее ухо Орган слуха: овальное и круглое окна, улитка с полостью, заполненной жидкостью, и кортиев орган – звуковоспринимающий аппарат Слуховые рецепторы, находящиеся в кортиевом органе, преобразуют звуковые сигналы в нервные импульсы, которые передаются на слуховой нерв, а затем в слуховую зону коры больших полушарий
Орган равновесия (вестибулярный аппарат): три полукруглых канала, отолитовый аппарат Воспринимает положение тела в пространстве и передаёт импульсы в продолговатый мозг, затем в вестибулярную зону коры больших полушарий; ответные импульсы помогают поддерживать равновесие тела
Читайте также:  Тиннитус: симптомы и лечение шума в ушах

Рис.
12.10. Органы
слуха
и
равновесия.
Наружное, среднее и внутреннее ухо, а
также отходящие от рецепторных элементов
органа слуха (кортиев орган) и равновесия
(гребешки и пятна) слуховая и преддверная
(вестибулярная) ветви преддверно–улиткового
нерва (VIII пара черепных нервов).

Механизм
передачи и восприятия звука.

Звуковые колебания улавливаются ушной
раковиной и по наружному слуховому
проходу передаются барабанной перепонке,
которая начинает колебаться в соответствии
с частотой звуковых волн. Колебания
барабанной перепонки передаются цепи
косточек среднего уха и при их участии
мембране овального окна.

Колебания
мембраны окна преддверия передаются
перилимфе и эндолимфе, что вызывает
колебания основной мембраны вместе с
расположенным на ней кортиевым органом.

При этом волосковые клетки своими
волосками касаются покровной
(текториальной) мембраны, и вследствие
механического раздражения в них возникает
возбуждение, которое передаётся далее
на волокна преддверно-улиткового нерва
(рис. 12.11).

Рис.
12.11.
Перепончатый
канал
и
спиральный
(кортиев)
орган.

Канал улитки разделён на барабанную и
вестибулярную лестницы и перепончатый
канал (средняя лестница), в котором
расположен кортиев орган. Перепончатый
канал отделён от барабанной лестницы
базилярной мембраной.

В её составе
проходят периферические отростки
нейронов спирального ганглия, образующие
синаптические контакты с наружными и
внутренними волосковыми клетками.

Расположение
и структура рецепторных клеток кортиевого
органа.
На
основной мембране расположены два вида
рецепторных волосковых клеток: внутренние
и наружные, отделённые друг от друга
кортиевыми дугами.

Внутренние
волосковые клетки располагаются в один
ряд; общее число их по всей длине
перепончатого канала достигает 3 500.
Наружные волосковые клетки располагаются
в 3-4 ряда; их общее число 12 000-20 000. Каждая
волосковая клетка имеет удлинённую
форму; один её полюс фиксирован на
основной мембране, второй находится в
полости перепончатого канала улитки.

На конце этого полюса есть волоски, или
стереоцилии.
Их число на каждой внутренней клетке
составляет 30-40 и они очень короткие –
4-5 мкм; на каждой наружной клетке число
волосков достигает 65-120, они тоньше и
длиннее.

Волоски рецепторных клеток
омываются эндолимфой и контактируют с
покровной (текториальной) мембраной,
которая по всему ходу перепончатого
канала расположена над волосковыми
клетками.

Механизм
слуховой рецепции.

При действии звука основная мембрана
начинает колебаться, наиболее длинные
волоски рецепторных клеток (стереоцилии)
касаются покровной мембраны и несколько
наклоняются.

Отклонение волоска на
несколько градусов приводит к натяжению
тончайших вертикальных нитей
(микрофиламентов), связывающих между
собой верхушки соседних волосков данной
клетки. Это натяжение чисто механически
открывает от 1 до 5 ионных каналов в
мембране стереоцилии.

Через открытый
канал в волосок начинает течь калиевый
ионный ток. Сила натяжения нити,
необходимая для открытия одного канала,
ничтожна, около 2·10-13
ньютон.

Ещё более удивительным кажется то, что
наиболее слабые из ощущаемых человеком
звуков растягивают вертикальные нити,
связывающие верхушки соседних стереоцилий,
на расстояние, вдвое меньшее, чем диаметр
атома водорода.

Тот факт, что
электрический ответ слухового рецептора
достигает максимума уже через 100-500 мкс
(микросекунд), означает, что ионные
каналы мембраны открываются непосредственно
механическим стимулом без участия
вторичных внутриклеточных посредников.
Это отличает механорецепторы от
значительно медленнее работающих
фоторецепторов.

Деполяризация
пресинаптического окончания волосковой
клетки приводит к выходу в синаптическую
щель нейромедиатора (глутамата или
аспартата). Воздействуя на постсинаптическую
мембрану афферентного волокна, медиатор
вызывает генерацию возбуждения
постсинаптического потенциала и далее
генерацию распространяющихся в нервных
центрах импульсов.

Открытие всего
нескольких ионных каналов в мембране
одной стереоцилии явно мало для
возникновения рецепторного потенциала
достаточной величины. Важным механизмом
усиления сенсорного сигнала на рецепторном
уровне слуховой системы является
механическое взаимодействие всех
стереоцилий (около 100) каждой волосковой
клетки.

Оказалось, что все стереоцилии
одного рецептора связаны между собой
в пучок тонкими поперечными нитями.
Поэтому, когда сгибается один или
несколько более длинных волосков, они
тянут за собой все остальные волоски.

В результате этого открываются ионные
каналы всех волосков, обеспечивая
достаточную величину рецепторного
потенциала.

Бинауральный
слух.

Человек и животные обладают пространственным
слухом, т.е. способностью определять
положение источника звука в пространстве.
Это свойство основано на наличии двух
симметричных половин слухового
анализатора (бинауральный слух).

Острота бинаурального
слуха у человека очень высока: он способен
определять расположение источника
звука с точностью порядка 1 углового
градуса.

Физиологической основой этого
служит способность нейронных структур
слухового анализатора оценивать
интерауральные (межушные) различия
звуковых стимулов по времени их прихода
на каждое ухо и по их интенсивности.

Если источник звука находится в стороне
от средней линии головы, звуковая волна
приходит на одно ухо несколько раньше
и большей силы, чем на другое. Оценка
удалённости звука от организма связана
с ослаблением звука и изменением его
тембра.

Источник: https://studfile.net/preview/6372176/page:3/

Слуховой анализатор

Воспринимающей частью слухового анализатора является ухо, проводящей — слуховой нерв, центральной — слуховая зона коры головного мозга.

Орган слуха состоит их трех отделов: наружного, среднего и внутреннего уха.

Ухо включает не только собственно орган слуха, с помощью которого воспринимаются слуховые ощущения, но и орган равновесия, благодаря чему тело удерживается в определенном положении.

Наружное ухо состоит из ушной раковины и наружного слухового прохода. Раковина образована хрящом, покрытым с обеих сторон кожей. С помощью раковины человек улавливает направление звука. Мышцы, приводящие в движение ушную раковину, у человека рудиментарны.

Наружный слуховой проход имеет вид трубки длиной 30 мм, выстланной кожей, в которой имеются особые железы, выделяющие ушную серу. В глубине слуховой проход затянут тонкой барабанной перепонкой овальной формы. Со стороны среднего уха, в середине барабанной перепонки, укреплена рукоятка молоточка.

Перепонка упруга, при ударе звуковых волн она без искажения повторяет эти колебания.

Среднее ухо представлено барабанной полостью, которая с помощью слуховой (евстахиевой) трубы сообщается с носоглоткой; от наружного уха оно отграничено барабанной перепонкой. Составные части этого отдела — молоточек, наковальня и стремечко.

Своей рукояткой молоточек срастается с барабанной перепонкой, наковальня же сочленена и с молоточком, и со стремечком, которое прикрывает овальное отверстие, ведущее во внутреннее ухо.

В стенке, отделяющей среднее ухо от внутреннего, кроме овального окна находится еще круглое окно, затянутое перепонкой. Строение органа слуха:

1 — ушная раковина, 2 — наружный слуховой проход,

3 — барабанная перепонка, 4 — полость среднего уха, 5 — слуховая трубка, 6 — улитка, 7 — полукружные каналы, 8 — наковальня, 9 -молоточек, 10 — стремечко

Внутреннее ухо, или лабиринт, расположено в толще височной кости и имеет двойные стенки: лабиринт перепончатый как бы вставлен в костный, повторяя его форму.

Щелевидное пространство между ними заполнено прозрачной жидкостью — перилимфой, полость перепончатого лабиринта — эндолимфой. Лабиринт представлен преддверием, кпереди от него находится улитка, кзади — полукружные каналы.

Улитка сообщается с полостью среднего уха через круглое окно, затянутое перепонкой, а преддверие — через овальное окно.

Органом слуха является улитка, остальные его части составляют органы равновесия. Улитка — спирально закрученный канал в 2 3/4 оборота, разделенный тонкой перепончатой перегородкой. Эта перепонка спирально завита и называется основной. Она состоит из фиброзной ткани, включающей около 24 тыс.

особых волокон (слуховые струны) разной длины и расположенных поперек вдоль всего хода улитки: самые длинные — у ее вершины, у основания — наиболее укороченные. Над этими волокнами нависают слуховые волосковые клетки — рецепторы. Это периферический конец слухового анализатора, или кортиев орган.

Волоски рецепторных клеток обращены в полость улитки — эндолимфу, а от самих клеток берет начало слуховой нерв.

Восприятие звуковых раздражений. Звуковые волны, проходя через наружный слуховой проход, вызывают колебания барабанной перепонки и передаются слуховым косточкам, а с них — на перепонку овального окна, ведущего в преддверие улитки.

Возникшее колебание приводит в движение перилимфу и эндолимфу внутреннего уха и воспринимается волокнами основной перепонки, несущей на себе клетки кортиева органа.

Высокие звуки с большой частотой колебаний воспринимаются короткими волокнами, расположенными у основания улитки, и передаются волоскам клеток кортиева органа. При этом возбуждаются не все клетки, а только те, которые находятся на волокнах определенной длины.

Следовательно, первичный анализ звуковых сигналов начинается уже в кортиевом органе, с которого возбуждение по волокнам слухового нерва передается в слуховой центр коры головного мозга в височной доле, где происходит их качественная оценка.

Вестибулярный аппарат. В определении положения тела в пространстве, его перемещении и скорости движения большую роль играет вестибулярный аппарат.

Он расположен во внутреннем ухе и состоит из преддверия и трех полукружных каналов, размещенных в трех взаимно перпендикулярных плоскостях. Полукружные каналы наполнены эндолимфой.

В эндолимфе преддверия находятся два мешочка — круглый и овальный со специальными известковыми камешками — статолитами, прилежащими к волосковым рецепторным клеткам мешочков.

При обычном положении тела статолиты своим давлением раздражают волоски нижних клеток, при изменении положения тела статолиты также перемещаются и своим давлением раздражают другие клетки; полученные импульсы передаются в кору больших полушарий.

В ответ на раздражение вестибулярных рецепторов, связанных с мозжечком и двигательной зоной больших полушарий, рефлекторно изменяются тонус мышц и положение тела в пространстве.

От овального мешочка отходят три полукружных канала, имеющих вначале расширения — ампулы, в которых находятся волосковые клетки — рецепторы.

Так как каналы расположены в трех взаимно перпендикулярных плоскостях, то эндолимфа в них при изменениях положения тела раздражает те или иные рецепторы, и возбуждение передается в соответствующие отделы мозга. Организм рефлекторно отвечает необходимым изменением положения тела.

Гигиена слуха. В наружном слуховом проходе скопляется ушная сера, на ней задерживается пыль и микроорганизмы, поэтому необходимо регулярно мыть уши теплой мыльной водой; ни в коем случае нельзя удалять серу твердыми предметами. Переутомление нервной системы и перенапряжение слуха могут вызвать резкие звуки и шумы.

Особенно вредно действует продолжительный шум, при этом наступает тугоухость и даже глухота. Сильный шум снижает производительность труда до 40-60%. Для борьбы с шумами в производственных условиях применяют облицовку стен и потолков специальными материалами, поглощающими звук, индивидуальные противошумные наушники.

Моторы и станки устанавливают на фундаменты, которые глушат шум от сотрясения механизмов.

Источник: https://www.examen.ru/add/manual/school-subjects/human-sciences/anatomy-and-physiology/sluxovoj-analizator/

Ссылка на основную публикацию
Adblock
detector